With an unsustainable food supply and a growing world population, 3D printing technology has provided alternate means of preparing food. Using the unique capabilities and restrictions attached to 3D printing, people will transition from traditional cooking to designing experimental, personalized and nutritionally-controllable foods.

So, a means of 3D printing organic materials is already out there: albeit a bit too pricey for the common kitchen now, but with time, even a college student will (probably) be able to afford it. The advantages of 3D printing your dinner is speed, ease and making any fun shape you can think of (as long as a programmer has created that specific recipe.) Of course, the downside is that you are mushing food through a tube and letting the machine squish out a babyfood-like substance in the shape of a dinosaur or an elaborate snowflake, so unless you like eating mashed potatoes ALOT, the texture could get redundant over time. Not to mention, if you are not versed with CAD or any other 3D modeling software, it is nearly impossible to create a recipe from scratch, so you are at the mercy of an outside source to create your dinner.

Natural Machines' Foodini 3D food printer.Natural Machines’ Foodini 3D food printer

All in all, this technology has made significant leaps in the past few years and can only be expected to explode into market in the very near future. It’s amazing to think the human race has come this far. But can’t we go farther? With this hot, emerging technology, can we not CRAFT food materials ourselves? We have been robbing Mother Nature of her resources for millennia, and though she is generous, she is far from bountiful.

So that leads me to this:
Soylent is a product created by Robert Rhinehart out of a need to streamline meal production. It is a beige goop drink that has all of the essential nutrients a human body needs, with ingredients sourced from nature and man-made creations. For almost two years, Rhinehart has been living almost exclusively off of this Soylent substance. Many people may cringe at the notion of drinking only this:

Soylent is marketed as a meal replacement that contains all the essential vitamins, minerals and proteins one needs

But many may consider it as a great meal replacement upon seeing its nutrition label. It’s great for dieters, nutrition hounds, or people in camp Rhinehart, who are just too darn sick and tired of how much of a time-suck food preparation can be.

This preface has finally brought us to the point of this article: combining the capabilities of 3D printing with a nutritional product with ingredients that can be made by man. Before you make a nasty face, please consider the ramifications of natural food production: we simply do not have enough food to feed everyone on this planet, not to mention the many more mouths of the growing population. We have to think about alternative means of nutrition. And if we have to start relying on man-made products to keep ourselves healthy and nourished. 3D printing could open up a fun, creative means of crafting meals that can vary in shape, size, color, texture, basic flavors, you name it! And with that, I give you:


FEED is a dual action 3D food printer that will serve as a common kitchen appliance. Output recipes using fresh ingredients or try your hand at designing your own food in a simple, intuitive way.

The printer has two cooking features: Traditional and Experimental. The traditional feature uses real food and recipes to produce convenient meals. The experimental feature uses the interface to create original food designs with no programming experience necessary! The user designs the nutritional profile and the characteristics of their meal, making creative exploration a priority and turning cooking in to designing.

FEED dual-action 3D food printer sketch.

The interface would be displayed on the side of the machine, and the “pods” would hold either the organic or man-made materials to be printed.

Now what do I mean by Traditional cooking and Experimental cooking? The two wireframes below outline the user experience:


The Traditional Cooking feature of this printer would follow a similar model to the 3D food printers currently on the market like the Foodini and the ChefJet. It will use organic food materials to create fun meals using recipes created by designers and developers familiar with CAD. The recipes would be available for purchase through the printer interface.

FEED-3D-food-printing-dual-expIn the Experimental mode, FEED would encourage user to design the shape, nutritional value and ingredients for the final product

The above is a sample screen from the Experimental Cooking feature. The user would control a number of characteristics of their meal without using a drop of CAD or programming experience. It’s basically Photoshop for food, and the possibilities are (almost) endless.


The nutritional profile for the food is adjustable. The compromise for not using real food ingredients is that the nutritional makeup of the meal is COMPLETELY customizable. If you are an athlete, you can have a ton of proteins and carbs. If you are watching your figure, you can bump up the vitamins and decrease the carbs and fats. And so on and so forth. The food printed at the end will gather the ingredients that complete this customized nutritional profile. You would just slide the dots up and down to complete the nutrition make-up of your soon-to-be-created meal.


The ingredients used for the Experimental cooking feature are based off of the Soylent ingredients, relying on a mixture of lab-made, artificial, and organic food materials.

There are three main categories that contain the adjustment features: Visual, Taste and Texture. You can adjust as many or as little of the features included in each of these categories that you need to create the meal of your dreams.

The Visual category contains color, surface, size, detail, multiplicity and opacity adjustments.


The Texture category contains Traditional food textures and Experimental food textures. The Traditional relates to textures we are used to in our foods today, and the Experimental includes textures that are foreign to us in our edible materials.

The Traditional mode contains temperature, shine, viscosity, smoothness, softness, moisture, granular and solidity adjustments.



The Experimental mode contains metallic, pixellation, tessellation, amorphous, webbed, weave, glitter and reticulation adjustments.


And finally, the Taste category contains flavor and spiciness. The flavors are based on basic taste receptors on our tongue, and not based on flavors of existing foods.


After you have made as many adjustments to the food as you want, you would tap on the image of the food located in the left hand bar menu. This leads to a pop up of a zoomed in image of the creation and an option to continue to cook the food. Then, the interface will determine what nutritional compounds are needed to create the food based on your custom nutrition profile and the adjustments made.


And with that, your experimental, exciting, out-of-this-world food is complete! In this particular example, I went through the motions of creating a 3D printed food that already exists from 3D Systems’ ChefJet. The Neon Ombre Sour, derived from sugar, is an architectural candy with fully customizable colors and shapes.

Neon Ombre 3D printed sugar from 3D Systems' ChefJet

[Read more about the Sugar Lab, the designers behind the ChefJet, here.]

The interface also has additional features to supplement the creation of original foodstuffs. Purchase, Recipes, Journal, and Statistics all help to ensure you, the user, can create the meal of your dreams.


I truly believe that by combining the powers of 3D printing with man-made nutritional compounds like Soylent, we are on our way to solving the global food crisis and ensuring we stay healthy and well fed in the future. The Experimental cooking feature is a way of acclimating people to a new way of cooking, and makes eating food creative and experiemental (to get over the ramifications of eating food with limited tastes and textures.) If interested in knowing more about it, visit maiyawiester.co

This article originally appeared on Medium and was edited by the editors at MOLD.